
I
I
I
I

STANFORD ARTIFICIAL INTELLIGENCE PROJECT
MEMOAIM-124

OS SPEECH ANALYSIS BY CLUSTERING, OR

O THE HYPER PHONEME METHOD

9 BY

M. M. ASTRAHAN

Reproduced by the
CLEARINGHOUSE

tor Föderal Saonlific i Technical
Infotmjton Sptmgfiold Vn. 22151

i
[COMPUTER SCIENCE DEPARTMENT

I STANFORD UNIVERSITY

I
L

4

STANFORD ARTIFICIAL INTELLIGENCE PROJECT MAY I97O
MEMO AIM-124

SPEECH ANALYSIS BY CLUSTERING, OR

THE HYPERPHONEME METHOD

by

M. M. Astrahan

ABSTRACT: In this work, measured speech waveform data was used as
a basis for partitioning an utterance Into segments and
for classiflying those segments. Mathematical classifi-
cations were used instead of the traditional phonemes or
linguistic categories. This Involved clustering methods
applied to hyperspace points representing periodic samples
of speech waveforms. The cluster centers, or hyperphonemes
(HPs), were used to classify the sample points by the
nearest-neighbor technique. Speech segments were formed
by grouping adjacent points with the same classification.
A dictionary of ^k different words from a single speaker
was processed by this method. 216 utterances, representing
four more repetitions by the same speaker each of the
original 5^ words, were similarly analyzed into strings of
hyperphonemes and matched against the dictionary by
heuristically developed formulas. 87^ were correctly
recognized, although almost no attempt was made to modify
and improve the initial methods and parameters.

i

1
I
I
I
1

The research reported here was supported in part by the Advanced Research
Projects Agency of the Office of the Department of Defense (SD-I85). The
work was done at the Artificial Intelligence Project of the Stanford
University Computer Science Department.

Reproduced in the USA. Available from the Clearinghouse for Federal
Scientific and Technical Information, Springfield, Virginia 22151.
Price: full size copy $3.00; microfiche copy $.65.

r
INTRODUCTION

This work was performed by the author at the Stanford University Computer

Science Department Artificial Intelligence Project during a sabbatical year

granted by the IBM Advanced Systems Development Division. The work was done

with the advice and counsel of Drs. A. L. Samuel and D. R. Reddy. Generous

assistance was provided by Gary Goodman, Lee Erman and Ken Siberz in partic-

ular and by many members of the project staff in general. An important point

of reference was a speech recognition system developed by P. Vicens and

D. Reddy. It is operational at the A. I. Project and is described in Vicens'
g

doctoral dissertation .

GOALS

There were two goals for this work. The first was to develop an algorithmic

learning technique for segmenting and classifying speech utterances, minimizing

dependence on heuristic methods and leading to a compact dictionary representa-

tion of reference utterances. The second goal was to develop a method of iden-

tifying unknown utterances by comparing them with the reference utterances.

BACKGROUND

g
The Reddy-Vicens system partitions an utterance into segments by means of

heuristic formulas applied to the differences between successive periodic

samples of the speech waveform. In general, successive samples which exhibit

small intersample differences are grouped into segments. Classification

formulas are then used to place the segments into 5 phonetic categories. For

reference utterances, the classification and time duration of each segment

are stored, along with a set of primary data measurements for each segment

typical of the samples which were grouped. This data is used for subsequent

comparison with segments of utterances to be identified. In the comparison

of an unknown and a reference utterance, corresponding segments are determined

from the classifications and then their durations and data measurements are

compared.

-2-

A classification in terms of standard phonemes or phoneme group categories

might result in a more compact reference representation by eliminating the need

to store the typical measured data for each segment. An unknown utterance

would then be identified from its segment classifications and durations.

An attempt was made to apply such classifications to the Reddy-Vicens segments

by standard pattern matching techniques, using a training set of data measure-

ments corresponding to standard phonemes. This attempt failed because of

wide variations in the training set among the data representing a given phoneme.

This led to doubts about the feasibility of characterizing classical phonemes

in terms of speech data measurements, at least in terms of the measurements

being used. It seemed more reasonable to let the measurements themselves

identify phoneme-like classes by means of clustering analysis.

DATA

The methods described in this report were tested on the list of 54 computer-

related words from Gold , shown in Figure 1. The list was recorded by Dr.

K. Stevens at Cambridge, Massachusetts, and provided to the Project by

Dr. D. fiobrow. The preprocessing hardware will be described only briefly since
g

it is described in detail in Vicens' dissertation * Only three channels were

used, corresponding roughly to the frequency range of the first two formats

and to the higher frequencies. The filters were 150 Hz. to 900 Hz., 900 Hz.

to 2200 Hz., and 2200 Hz. to 5000 Hz. Readings were taken for each channel,

every ten milliseconds, of the peak-to-peak amplitude and the number of zero

crossings for the ten-millisecond period. There are thus six measurements,

so that each sample can be represented by a point in a six-dimensional space.

For each utterance, all amplitude values are normalized so that the highest

amplitude found in the first channel has a value of 64. The zero crossing

values are proportional to the number of sign changes in the signal in the 10

millisecond period. They are taken as a rough estimate, within each filter

band, of the formant location, or the peak position in the energy versus fre-

quency curve.

The 270 utterances (five repetitions of 54 words) resulted in a total of

19,850 sample points. This data was available in digital form on tape.

r
r
i

-3-

CLUSTIiRING

Clustering involves partitioning a set of points in a space into regions

according to some criterion of similarity. In the work being reported here,

the criterion chosen was geometric, or Euclidean, distance between the sample

points. The clustering method applied to speech data retains an important

phoneme characteristic in that relatively long periods during which the

speech parameters vary slowly provide more points and, therefore, are assumed

to be more significant than periods of rapid variations. It was thus expected

that sample points would be relatively dense in regions of the measurement

space corresponding to periods of slow parameter variations and that similar

regions would occur in a number of different utterances. The centers of these

regions could then be found by clustering analysis. Since these phoneme-like

clusters would be generated algorithmically from the hyperspace points and

would be used like phonemes, they were called "Hyperphonemes." The abbrevia-

tion "HP" will be used in this report.

The clustering methodology used borrowed heavily from techniques reported in

the literature » » ♦ » » .it will be summarized here and described in

more detail in Appendix A. The process begins with the selection of a large

number of cluster centers scattered throughout the measurement space. These

are components of the "natural" clusters being sought. (The reader will find

in the referenced literature attempts to define "cluster" and the "similarity"

of or "distance" between points in a cluster.) Cluster boundaries are

determined by assigning each point to its nearest center. The center of each

cluster is then recalculated. This assignment and center recalculation process

is repeated until it converges, as indicated by some measure of cluster com-

pactness. The "natural" clusters are then approached by a process of combin-

ing the closest clusters, interspersed with reassignment and center recalcula-

tion. Because of these iterative processes, the exact location and number of

initial clusters should be uncritical, affecting mainly the subsequent computa-

tion time.

An important question concerns where to finally stop the combining processes.

Where there is a natural number of clusters, such as in single font character

I

-4-

recognition, one might expect the minimum cluster distance to take a sudden
3

jump when the subclusters within the natural ones have all been combined . No

such terminating signal appeared for the speech data, so the <. id point for the

cluster combining process was arbitrarily chosen as ten clusters . A large

number of clusters provides more resolution for distinguishing among speech

utterances at a cost of more segments to store and more computation in the

matching process. Fewer clusters means reduced storage and computation but

more chance of confusion among acoustically similar utterances.

After the iteration process, the clusters remaining were ordered by magnitude

of the amplitude components of the coordinates of the cluster centers and

given hyperphoneme identification numbers. The list of the HPs used for

subsequent matching is given in Figure 2. In this table, each HP identifica-

tion number is followed by the HP number of the four closest HPs and the square

of the distance separating them from the given HP. The concept of distance

between neighboring HPs is crucial to the subsequent process of identifying

unknown utterances. The six coordinates of each HP are also given in Fißure 2.

Al, A2, and A3 are derived from the amplitudes of the signals in the three

channels. The Zs are derived from the zero crossing data. The number of

points that were assigned to each HP are shown along with the variance calcul-

ated as the average squared distance of the points from the cluster center.

There were 132 points which did not participate in the final determination

of the center locations because they were more distant than 16 from all the

cluster centers.

SEGMENTATION

Segmentation involves partitioning an utterance into fundamental units. An

unknown utterance will later be identified by matching its segment pattern

against a standard representation in a dictionary.

In order to generate the segments, each of the points of the original 270

utterances was labeled with the ID number of the closest HP. Successive

points with ehe same ID number were then grouped into a segment and the seg-

ment was assigned a duration equal to ten milliseconds times the number of

successive points. Figure 3 shows a time scale plot of the segments for the

5 repetitions of the word DELETE. The HP number is shown for each segment.

r
i
i
!

I
I
1
I

COMPACTING

The HPs represent regions in the measurement space. The clustering process

should, by definition, minimize the number of sample points near the region

boundaries. However, there were cases where the path of successive samples

oscillated across a boundary, resulting in several segments whose labels

alterwr-ted between two HPs. There were also 10 millisecond (one sample point)

segments preceded and followed by segments from relatively distant regions.

It seemed that both dictionary storage space for the standard representation

of each word and computation time for the matching process could be reduced

by combining the oscillating sequences and eliminating the short isolated

segments. It also appeared that adjacent segments whose HPs were closest

neighbors in the measurement space could usually be combined with no loss

of discrimination among words.

For compacting and for subsequent matching, a maximum neighbor distance

was defined such that two HPs separated by no more than this distance would

be called neighbors. The distance was chosen as the smallest that provided

each HP with at least one neighbor. From Figure 2, it is seen that HP 6

is farthest from its closest neighbor, requiring a maximum neighbor distance

of 24 (/SSS =23.6). It turned out that two HPs have two neighbors and

one has three. The compacting rules caused adjacent neighbor segments to

be combined. They are given in Appendix B.

The compacting operation has a price. The information lost can in some cases

be crucial to the subsequent matching process. For example, in the word

QUARTER, two short HP 7 segments surrounded by two longer HP 9 neighbor

segments are combined with them and an interior ten millisecond HP 5 segment

is dropped, throwing away the "t" sound and forming one long HP 9 segment,

which looks like the long HP 9 segment in CORE. More often the results

were to make corresponding segments in repetitions of the same word look

more alike, but it is apparent that too much compacting was done.

An example of the results of the compacting operation are shown in Figure 4

for DELETE. HP numbers with a period represent an HP half way between the

numbers shown; e.g., HP 5.6 is between HP 5 and HP 6.

-6-

I
I

ll

1

MATCHING

At this point, a speech utterance was characterized as a string of number

pairs, each pair representing a speech segment and consisting of a 6-bit dura-

tion in tens of milliseconds and a 5-bit number. Dictionary entries for

reference could thus be stored using one 36-bit computer word for a heading

and one word for every three segments. The basic dictionary required an

average of 3 1/2 words per entry, compared with about 14 words for comparable

information in the Vicens-Reddy system . The next requirement for identifying

T unknown utterances was an algorithm to provide a numerical measure of the

* similarity of two utterances characterized as strings of hyperphonemes.

In the comparison between an unknown utterance and a dictionary entry, a

penalty score is accumulated tor every difference found. A zero score indicates

near identity and the dictionary entry with the lowest score is taken as

the best match. In contrast to the algorithmic nature of the classification

system, the matching rules are quite heuristic. They are probably oriented

too closely to the characteristics of the test data and may need to be modified

if new data are tried.

The matching algorithm is giveu in Appendix C. It involves setting up corres-

pondences between segments of two utterances based on their HP neighbor dist-

ance. Penalty scores are applied for position, duration and HP number differ-

ences between corresponding segments. The component scores in a matching are

accumulated as they are calculated. In a comparison of an unknown utterance

with a series of dictionary candidates, the matching is terminated whenever

the accumulated score exceeds the lowest score previously calculated.

RESULTS AND CONCLUSIONS

The matching algorithm has been tested on the list of 270 utterances. The first

repetition of each of the 54 words, the ones used to generate the hyperphonemes,

were stored as a dictionary. The remaining 216 utterances were then matched

against the dictionary. 189 of these, or 87%, were correctly identified by

the lowest score.

1

r
i

i

i

i

i

i

Some of the incorrect identifications were due to variations in the 5 repeti-

tions of a word such that the first repetition wns not the most representative.

Therefore, an experiment was run to see how many of the 216 utterances had

to be added to the dictionary to insure 100% correct recognition. Since a

few of the correct identifications were by very close margins, a larger score

difference was required for acceptance. An utterance was added to the dictionary

whenever its lowest score in comparison with a correct entry was not at least

ten points below the lowest comparison with all the wrong entries. The first

pass resulted in 28 new dictionary entries. Since some of these new entries

were too close to previously correctly identified utterances, a second pass

was made using the expanded dictionary. Four more utterances were added to

the dictionary, resulting in a total of 32 entries in addition to the original

54. At this point the system stabilized since a third pass did not result in

any further additions to the dictionary. Figure 5 shows some samples of the

printout from the third pass. For each utterance the scores achieved in

matching with the correct dictionary entry or entries are shown in comparison

with the lowest score achieved in comparison with the wrong entries. Each

utterance compared with itself achieved, of course, a 0 score.

It is important that the 216 utterances representing the second through fifth

repetitions of each word were not involved in the generation of the hyper-

phonemes or of the original dictionary entries. The initial 87% recognition

of these 216 was achieved with almost no attempt to optimize rules or parameters.

Adding 32 of the 216 to the dictionary resulted in correct identification

of all 216. Ther.e 32 actually represented 26 different words of which 22

required one extra dictionary entry, 2 required two extra, and 2 required

three extra. CORE and FOUR were the worst cases and inspection of the data

shows that information lost in the combining process was crucial. CORE was

most often confused with QUARTER, and FOUR most often with CORE. Requiring

2 extra entries were WORD and DIVIDE. WORD was confused with FOUR and QUARTER;

DIVIDE, with NINE and WORD. A majority of the cases requiring a second dictio-

nary entry involved an excessive variation among the repetitions of a word

rather than a very low competing score from some other word.

Comparison with the Vicens-Reddy results is difficult since their results on

the same data are presented differently. However, it seems clear to me that

their correct identification rate is higher. What the comparison would be

with a comparable period of development is impossible to conjecture.
1.

The significance of the work lies in the compact dictionary, the algorithmic

nature of the clustering and segmentation, and the neighbor-distance concept

used in comparing strings.

TIMING

The work was done on a time-shared PDP-10 at the A.I. Project with about six

other users active. The programs were written in SAIL, an ALGOL-like language.

It is not possible to estimate the amount of computer time devoted to the

computation, so elapsed time estimates are given here.

Not counting manual interactions which could be programmed, it took about

12 minutes to enter 3231 converted and scaled points and arrive at the initial

212 clusters. The time consuming part of the subsequent clustering iterations

was the assignment of all points to their closest cluster center. This time

depended on the number of clusters remaining after combining closest clusters.

24 assignment cycles were used in going from 212 to 10 clusters. These cycles

took about 72 minutes. It is probable :hat a much smaller number of initial

clusters would have worked as well, greatly reducing the calculation time.

About 10 minutes were taken by the other operations. Final assignment of

all 16000 points to their nearest HP took about 10 minutes. Compacting took

about 5 minutes. In matching, each comparison of an utterance with 54 dictionary

entries took about 1 second. No attempt was made to implement a candidate

selection process to reduce the number of matchings attempted.

DIRECTIONS FOR FUTURE WORK

The most important problem for future work deals with the use of additional

test data to determine the extent to which the combining and matching rules

have been optimized for the particular set of test data. The next area of

concern is parameter and procedure optimization. The only attempt at optimiz-

r
(

i

i

-9-

I

I

I

I

ing parameters occurred when variations were tried on the scores applied

to unlinked segments. Some candidates for optimization include the choice

of logarithmic conversion and the initial scale factors for the six parameters,

the number of hyperphoneaes(the rules for combining segments, the maximum

distance allowed for neighbors, and the matching rules and parameters. It

has been pointed out, for example, that the combining rules for ten millisecond

segments sometimes result in throwing away important information.

Finally, it would be interesting to investigate the effects of higher resolu-

tion input with more channels.

o
NOTE: A very relevant reference, by Steingrandt and Yau , appeared after

completion of this paper. They classify waveforms by sequential features

which are like hyperphonemes, although the clustering technique and distance

measures are different and segment duration is ignored. They used 50 channels

in their input analyzer. Recognition was done by a sequential state machine

for each dictionary word, made as a composite of many training samples.

Recognition results were presented only for the training set.

APPENDIX A. CLUSTERING METHODS

In clustering points whose individual dimensions are different kinds of

measurements, the choice of scaling factors is very important. A change in

scaling factor will change the similarity measure (distance in our case)

among points, altering the way the points are grouped into clusters. This

problem arises with the six dimensions of the speech data, since amplitude

and zero crossings are measured in different units and the relative import-

ance of the measurements from the three channels is unknown. The first

choice of scale factors gave good enough results so that obvious opportunities

for optimization were deferred as candidates for follow-on work.

The fundamental scale factor decision was the choice of a logarithmic conver-

sion, to conform with human perception of relative amplitude and pitch changes.

The amplitudes in the second and third (higher frequency) channels were first

•lO-

divided by two in order to give them less weight than the amplitude in the

first channel. Since the zero crossing counter in the preprocessor only

operates when the signal amplitude is above a preset minimum, zero crossing

values corresponding to frequencies well below the filter lower cutoff are

sometimes encountered. Such values were arbitrarily set equal to zero for the

second and third channel and signal values were converted as ratios to the

cutoff value chosen. After logarithmic conversion, further scale factors

were applied to all values, equivalent to raising the arguments to various

powers. This brought the resulting values into an approximate range of 0-60

for the amplitudes and 0-25 for the zero crossings. As an example, an ampli-

tude of 64 in the second channel would lead to a value of 50, using a scale

factor of 33.3:

50 = 33.3 log10
(")■

A channel 2 zero crossing value of 24 would lead to:

15 » 50 log10 (24^

where 12 represents to lower cutoff value and 50, the scale factor. The ranges

chosen allow a maximum diagonal across the hyperspace of about 113. The scale

factors greatly de-emphasize the importance of the zero crossings and allow

all values to be represented by 6-bit numbers. The discontinuity in taking

the logarithm of a zero argument was arbitrarily resolved by using the same

value as for an argument of one, namely zero. It might have been better to

add one unit to all arguments before conversion.

After conversion, some small-valued sample points at the beginning and end of

an utterance became zero and were eliminated, leaving about 16,000 points.

The points from the first repetition of each of the 54 words, a total of 3,231,

were then used for the clustering process. The only difference from standard

reported clustering techniques was in the method of forming initial clusters.

The basic idea was to form many small clusters in the high density regions.

A density was calculated for each sample point as the number of points lying

within a hypersphere centered on the given point. The hypersphere radius

f

(

I

I

•11-

I
I.
I
L
I

chosen was eight. (The maximum distance between points was approximately 80.)

The points were then ordered by density and the highest density point was

taken as the first cluster center. Subsequent cluster centers were formed

from the remaining points in descending density order, taking only those

points whose distances from all previously selected cluster centers were

greater than a selected minimum and whose densities were greater than one.

The minimum distance determined the number of initial cluster centers. A

radius of eight gave 212 starting clusters. There were 39 isolated points

(density = 1) which were not included in any of the initial clusters. An

iterative procedure was then followed consisting of the following two steps:

(1) Assign all points to the nearest cluster center, omitting those farther

than a predetermined maximum distance from all cluster centers. Re-

calculate the center positions. Repeat until the number of unassigned

points and the mean square distance of all assigned points from their

cluster center are stabilized.

(2) Combine the closest clusters so that all remaining clusters are separated

by at least a minimum distance. Each combination involves a merger of

points and a recalculation of the cluster center. This was done until

a 40-50% reduction in the number of clusters was made. Since combining

two clusters preserves their outer boundary while merging the center

locations, it seemed reasonable to then reassign (step 1). This may be

unnecessary until the end of the combination process.

All distances were calculated as the sum of the squares of the individual

dimension differences. Since only relative distance comparisons were needed,

the square root never had to be computed. To speed up the process of finding

all points within a given distance of a given point, an indexing technique

was used. This involved partitioning the hyperspace into cubes and chaining

together the points within each cube. For distances no greater than the

cube side, only the cubes surrounding the given point needed to be searched.

This was used in the original density calculations and in the nearest-neighbor

assignment process.

I
I
I
I
I
I
I
I
:

-12-

APPENDIX B. COMPACTING RULES

The compacting rules for combining adjacent segments were:

(1) Segments not immediately adjacent to a neighbor were not affected.

Example: 4(20), 9(30) -► 4(20), 9(30). HP 4 for 20 milliseconds followed

by HP 9 for 30 milliseconds remains unchanged.

(2) Two segments with the same HP numbers surrounding a ten-millisecond

segment were combined, including in the total duration the extra ten

milliseconds.

Example: 4(20), 9(10), 4(30) -►4(60).

(3) Two adjacent neighbor segments were combined. Since HPs 2, 5 and 7

had more than one neighbor, there were some sequences of three or more

segments with different HPs wherein all adjacent segments were neighbors.

In these cases, the closest neighbor pairs were combined first. Under

this rule, a combined segment did not participate in further combina-

tions unless it was originally part of an oscillating sequence of the

same two HPs When adjacent segments were combined, their durations

were summed. If the duration corresponding to either HP had two or more

times the duration corresponding to the other, the HP number representing

the longer duration was applied to the combined segment. Otherwise, a

number representing an HP half way between the two was applied. For

this purpose, numbers 11-17 were added to the HP list.

Examples: 3(30), 4(60) -> 4(90). 3 and 4 are neighbors.

3(30), 4(50) -*■ 3.4(80). 3.4 is halfway between 3 and 4.

This form is used for printing instead of the actual

internal HP number.

4(30), 3(30), 4(40) -> 4(100). Oscillating sequence.

F(30), 7(30), 9(30) -»■ 5(30), 7.9(60). 7 is closer to 9 than

to 5.

(4) Ten-mi Hi second segments not covered by the preceding rules were

eliminated.

Example: 4(20), 9(10), 7(30) ■> 4(20), 7(30).

r
(

i

•13

I

I

I

APPENDIX C. MATCHING ALGORITHM

In matching, a numerical measure is sought for the similarity of two utterances.

The matching process begins with a comparison of overall duration. A duration

difference greater than 150 milliseconds immediately terminates the matching

process with a rejection. Otherwise, duration differences greater than

40 milliseconds receive a score of 0.2 times the excess over 40. This often

helps to distinguish among utteranc3S with similar parameters.

When a word is spoken several times at slightly different speeds, we cannot

expect all parts of it to be proportionally speeded or slowed. Nevertheless,

it proved helpful, in looking for correspondences between parts of two examples

of the same word, to make their total durations the same. Tlierefore, the

segment durations of the shorter utterance are expanded proportionally, rounded

to the nearest ten milliseconds, so that the overall durations of the two

utterances are equal. The new segment boundaries are used for subsequent

position correspondence calculations, but the original durations are also

retained for duration difference measures. Figure 6 shows an example of the

first and fourth versions of DELETE to illustrate matching. Since the overall

duration difference is 30 milliseconds, the difference score is zero. Figure 7

shows the conditions after expansion of the first utterance.

The matching algorithm forms links between "corresponding segments" of the

two utterances being compared. Corresponding segments are defined roughly

as closest neighbors occupying similar time positions in the two utterances.

The algorithm must, therefore, consider each segment of each utterance, searching

the corresponding position of the other utterance for neighbors. To do this,

it considers in time sequence each segment of one utterance and then each seg-

ment of the other. For each segment being considered, a region of the other

utterance is scanned beginning 30 milliseconds before the start of the segment

under consideration and ending 30 milliseconds after the end of the segment

under consideration to allow for speed variations. For each segment of which

any part is in the scanned area, two measures are calculated. The first

measure is the overlap with the original segment under consideration. The

T

„

I
T overlap is a measure of time position correspondence consisting of the number

» of ten millisecond periods common to both segments in the expanded plot. If

^ they have no segments in common, the overlap is negative and its magnitude is

X the number of ten millisecond periods separating them. The second measure

is the neighbor distance between the HPs of the two segments being compared.

The actual distance is used here if it is no greater than 24, the maximum

neighbor distance chosen in the preceding compacting process. A more distant

HP is eliminated from consideration. A closeness index is formed consisting

of the distance measure less the smaller of ten or two times the overlap

measure. The lowest closeness index selects the closest neighbor (if any)

within the scanned range, with some bias towards the most overlapping segment

in the case of two candidates with nearly equal distance measures. A link is

formed from the original segment under consideration to the selected segment

in the scanned area. If the two utterances being compared are thought of as

laid out on parallel lines as shown in Figure 7 and links are thought of as

a line from the middle of one segment to the middle of another, then no link

is allowed to cross any previous one. A segment has only one link to another

but is allowed up to five links from other segments (a question of storage

allocation) as long as these links do not cross other links. Figure 8 shows

the example with the links indicated by arrows.

A neighbor distance score is applied once to every linked pair of segments as

a measure of how closely they match. This is the distance between their HPs

times the actual (not expanded) duration in milliseconds of the shorter

segment of the pair, divided by 100. The thought here was that a short seg-

ment whose HP is a neighbor of, rather than identical to, that of a longer

segment to which it is linked should not be penalized as much as a longer

segment would be. The duration difference is separately penalized. In the

example, the distance between HP 5 and HP 5.6 is 12. Therefore, the third

linked pair gets a score of 13 since the original duration of the HP 5 seg-

ment was 110 milliseconds. Segments which are not linked to any other are

penalized by a score of 15 plus 3 times the original duration of the segment

in tens of milliseconds. This non-linked penalty resulted from a few experi-

ments with different values, the only such experiment made. Figure 9 shows

the neighbor distance scores applied to the example.

r
r

•15-

I

I.

I

1.

A difference in duration between linked segments is the main thing distinguish-

ing some correct matches from incorrect ones. Therefore, a duration difference

score is calculated. The formula is as follows (where DD is measured in tens

of milliseconds based on the durations before expansion):

0 if DD is less than 2;

2(DD-1) for DD from 2 through 6;

10+4(DD-6) for DD from 7 through 9;

22+8 (DD-9) for DD greater than 9.

This formula applies a much stronger penalty to large differences than to

small ones. It applies directly to individual linked pairs such as the

8 to 8 or the 1 to 1.2 in the example. However, where more than two segments

are tied together by a continuous chain of links, a group is formed. Tne

5, 6, 5 to 5.6 group in the example illustrates this. The durations of the

grouped segments in each utterance are summed and the overall difference

used in the formula. This avoids penalizing oscillations among neighboring

segments that remain after the combining operation. For the illustrated

group, the three original durations summed to 19, versus 19 for the HP 5.6

segment, for a duration difference of 0. Note that the unmatched HP 8 segment

does not participate in this process.

Finally, a position difference score is calculated for each linked pair based

on the difference between the center positions of the expanded segments.

Integer division is used in calculating the centers, resulting in rounding

down to the next lower integer number of tens of milliseconds. The score is

half what the duration difference score would be for the same argument. In

the example, the matching HP 8 segments have a position difference of 27-24 = 3

for a score of 2. For groups, the center position is calculated as a center

of gravity of the segments involved so that unlinked segments inside the group

do not participate. Ir the illustration, the center position of the HP 5, 6,

5 part of the group is (3x1+5x5+11x16) divided by 19 = 10. This is compared

with the value of 11 for the HP 5.6 segment for a difference score of 0.

Figure 10 shows the example with duration and position difference scores.

-16-

REFERENCES

1. G. H. Ball § D. J. Hall, "ISODATA, a novel method of data analysis and
pattern classification,n Stanford Research Institute, Menlo Park, Calif.,
Tech. Report, April 1965.

2. G. H. Ball, "Data Analysis in the Social Sciences," American Federation of
Information Processing Societies Conference Proceedings, Fall Joint Computer
Conference, 27, Part 1 (Spartan Books, Washington, D.C., Macmillan, London,
1965), pp. 533-560. (Also printed as: "A Comparison of Some Cluster-seeking
Techniques," Technical Report No. RADC-TR-66-514, Rome Air Development
Center, Griffiss Air Force Base, New York, November 1966.)

3. R. G. Casey § G. Nagy, "An autonomous reading machine," IEEE Trans.
Electronic Computer, Vol. C-17, May 1968; also Research Report RC-1768,
IBM Corporation, Yorktown Heights, N. Y., February 1967.

y 4. T. M. Cover § P. Hart, 'The nearest neighbor decision rule," presented
at the International Symposium on Decision Theory, 1966; also T. M. Cover

* § P. E. Hart, "Nearest neighbor pattern classification," IEEE Trans
Information Theory, Vol. IT-13, pp. 21-27, January 1967.

5. B. Gold, "Word Recognition Computer Program," Technical Report 452,
Lincoln Laboratories, MIT, Cambridge, Mass., 1966.

6. P.E. Hart, "The Condensed Nearest Neighbor Rule," IEEE Transactions on
Information Theory, Vol. IT-14, No. 3, May 1968, pp. 515-516.

7. G. Nagy, "State of the Art in Pattern Recognition," Proceedings of the
Institute of Electrical and Electronic Engineers, Vol. 56, No. 5, May 1968,

8. P. Vicens, "Aspects of Speech Recognition by Computer," Computer Science
Department of Stanford University, Stanford, California, Memo AI-85,
CS 127, April 1969.

9. W. J. Steingrandt § S. S. Yau, "Sequential Feature Extraction for Waveform
Recognition," American Federation of Information Processing Societies
Conference Proceedings, AFIPS Press, Vol. 36, 1970 Spring Joint Computer
Conference, pp. 65-76.

. ■

r
i
i

-17-

I
L
I
L

INSERT NAME

DELETE END
REPLACE SCALE
MOVE CYCLE
READ SKIP
BINARY JUMP
SAVE ADDRESS
CORE OVERFLOW
DIRECTIVE POINT
LIST CONTROL
LOAD REGISTER
STORE WORD
ADD EXCHANGE
SUBTRACT INPUT
ZERO OUTPUT
ONE MAKE

TWO INTERSECT
THREE COMPARE
FOUR ACCUMULATE
FIVE MEMORY
SIX BYTE
SEVEN QUARTER
EIGHT HALF
NINE WHOLE

MULTIPLY UNITE

DIVIDE DECIMAL
NUMBER OCTAL

Figure 1: 54 word list

• 18-

I
I
I
T

«L m o W Tt TS. «L t--. Tf o>
(/) 1 LO !>. a» to 1^. vO i-H rt o> 00
4J -O W 0} (H »-H i-H i-H

P
o
i
n

H
P

a
n

re

Di

o
m

t
h

II ii II 11 II II II II II II

M 3 ^ 2g 5g 5g ^ sg 5g 2g sg
«M a M 0) > > > > > > > > > >
O bo 9 uu 4->

H.S5- g at
C/3

A

A CO
*

CO CO CO CO
a) e a> u H £ f""* g H H 5- 1- H H

N
u
m
b

D
e
f
i

M
e
a
n

t
a
n
c
 a. cx CL a. o. o. a a.

». 04 in A. IO i-H to vO i-H **•
^H 00 00 1^. to r-) CT» to t» ^H
^f ro CM (N t i-H to CM m to

^ «i
it

a». i-H
*

vO i-H vO m
M ^H <M

1 to -H r-H to m Ä ^H r-H 00 PM 00
< CM (N CM (N CM

0> 0)
•O ^j
3 +3
•p . rM <N <& «N i-H ^H (N ^t «. o> to
•H U M ^H i-H
<-^ o

CVJ i-H r-t i-H i—1 to VO Ä o> 00 vO
i P <fl < <N (N to ">*
1 (4 i-H

V) Q (U
V c
+J 00 § 1—I <-H in «a. vO CM to m vO o> «I
rt C M i-H i-H »H i-H i-H PM
C -H JC

•O w
u

^ o to 5 SL 00 (M i-H 00 r^ o> m m 00
o h i-H CM to ^• ■* m m m
O CJ
U (

o
u u
«) Q) CO W5 en CO CO CO CO CO CO en
PM

0)

t-l M l-H HH 1—1 l-H HH l-H HH HH

OS oc 06 B6 06 06 06 06 06 06
u 1 Ui l 1 1 1 I 6 Ö 1 1 S Ö

*
r- 9? 00 00

0S

in ^ * ■« ^H

Ö 00 o> vO i-H to 00 00 *^ TJ"
in i-t <M CM to vO «I «I m a\

o i-H pH <N f-t i-H O» CT> w i-H ^H

1 in
1

ro
1

m
1

i-H
1 1 1

00
1 1

vO
1

vO
^io
•H
0)
z 0)

u 00 A

m
«i A % * * « A 00

4-> 13 vO t» to t^ oo m to to to ts.
(0 rM 00 ^H 00 in f-t to 9k «a. vO

s
4J

■ en i-H (J> m t^ vO 00
1

00 i-H

(0
•H

l
t

1 1 1 1
00

1
vO

1 1
oo

1
1^.

V a
z

•o
t u A A m A A ^ A * A n

13 in vO m to VO to o> m ^H i-H
(M 00 m 00 vO m to CM ^H o> W
o 1

C/5

1
^ vO o> ■^t vO ^ t^ r^ r^

tfl
1

to
1 m rH vO

i
CM

1 1
m

1
vO

1 1
at

M i-H

V "O

g
f

rg

i

I oattotoaiooto^-to^-
VOVQ«.9LPVI inaLCM«>.PM
toto^^^- m^- eotto

i i i i i II iii
pgi-H^-tor^mo» oi^oo

^
PM to m vO oo o»

r -19-

DELETE
2 6 34

5 6 8 6 5 8 6 5 2 1 3 1

1
•

5 8 6 B 1: ̂ h 3 1

245 7
2 1 6 8 6 5 8 6 5 2 1 3 1

5
1 6 5 6 8 6 5 |2 1 3 1

1 5 6 B 6
5 «

» 8 6 5 2 1 3 1

Figure 3. The 5 repetitions of DELETE, illustrating segmentation

DELETE

5 6 8 5 8 5.6 i.2 3 1

1 6 5 8 5 1.2 3 1

l

2 6 8 6 5 8 6 1 3 1

1 5.6 8 6 1 3 1

L - ■

1 5.6 8 5.6 8 5.6 1.2 3 1

L
I
I

Fi^ jur e 4. St sgments of I DELETE af ter CO mpac ting

■20-

OUTPU WORD NO. 42

1: 42-0 42-72

2: 42-89 42-112

3: 42-63 42-22

4: 42-101 42-79

5: 42-135 42-0

SMALLEST ERROR SCORE IS 9-169

SMALLEST ERROR SCORE IS 47-164

SMALLEST ERROR SCORE IS S4-10S

SMALLEST ERROR SCORE IS 54-146

SMALLEST ERROR SCORE IS 9-108

2 DICTIONARY ENTRIES

MAKE WORD NO. 43

1 43-0 43-53

2 43-53 43-0

3 43-87 43-42

4 43-77 43-48

5 43-97 43-43

SMALLEST ERROR SCORE IS 48-58

SMALLEST ERROR SCORE IS 23-55

SMALLEST ERROR SCORE IS 23-66

SMALLEST ERROR SCORE IS 23-77

SMALLEST ERROR SCORE IS 48-105

2 DICTIONARY ENTRIES

INTER WORD NO. 44

1: 44-0 SMALLEST ERROR SCORE IS 14-271

2: 44-73 SMALLEST ERROR SCORE IS 52-227

3: 44-57 SMALLEST ERROR SCORE IS 52-206

4: 44-40 SMALLEST ERROR SCORE IS 52-189

5: 44-83 SMALLEST ERROR SCORE IS 14-314

1 DICTIONARY ENTRIES

COMPA WORD NO. 45

1: 45-0 SMALLEST ERROR SCORE IS 37-184

2: 45-50 SMALLEST ERROR SCORE IS 26-170

3: 45-34 SMALLEST ERROR SCORE IS 37-194

4: 45-47 SMALLEST ERROR SCORE IS 47-182

5: 45-59 SMALLEST ERROR SCORE IS 37-166

1 DICTIONARY ENTRIES

Figure 5: Sample of Matching
Results

r -21-

1
I
I

DELETE
0 3 8 10 21 31 37 41 50 56

5 6 8 5 8 6.6 1.2 3 1

0 2 21 28 37 45 54 59

1 5.6 8 6 I 3
'

Figure b. Example to illustrate the matching algorithm

DELETE
0 3 i 5 11 22 33 39 43 52 5S

5

o ;

1 6 8 5 8 5.6 1.2 3 1

> 2 1 28 37 45 54 59

1 5.6 8 6 1 3 ! 1

Figure 7. Example after expansion

DELETE
0 3 8 11 22 33 39 43 53 59

5 6 8 5 8 5.6 1.2 3 1

x\ / / / //
/

/ '
1

o,^/ 21 / 28 / v. 54 \f 59

1 5.6 8 6 1 3
^

Iiguro 8. Example with segments linked

•22.

DELETE
0 3 11 22 33 39 43 53 59

5 6 8 5 8 5.6 1.2 3 1

\A 21
/ // // ' \\ w

0 2 1/ /a
28

7/
/ 3

37 ' 45 \
0 54 It 59

1 5.6 8 6 1 3 1

Figure 9. Example with neighbor distance scores

DELETE
0 3 8 11 22 33 39 43 53 59

5 6 8 5 1 . 5.6 1.2 3 1

0 2 W /

- / 28 / I " 45 54 If 59
1 5.6 8 6 1 3 1

0/0 4/2 4/3 6/0 0/0 0/0

Figure 10. Example with duration/position difference scores

